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I. ABSTRACT

This project explores different convolutional neural
network architectures applied to the semantic map
segmentation task. We retrieved the map dataset from
Kaggle and implemented three CNN models: U-Net,
FCN-8, and FCN-32. We conducted quantitative and
qualitative analyses which showed that U-Net performs
the best on the segmentation task, while the FCN
models demonstrate sub-optimal performance likely
due to the input image resolution, dataset size, and
the specifics of the FCN architecture. We also discuss
the limitations and future work related to the map
segmentation task.
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II. INTRODUCTION

Images come in all forms — shapes, sizes,
and colors — each containing various convoluted
components. While humans can effortlessly distinguish
one component from another, computers require
sophisticated methods to achieve similar results. The
origin of computer vision can be traced back to a
grainy image of a baby, merely 5 centimeters square.
This image was captured by computer scientist Russell
Kirsch, the pixel inventor, and his colleagues at the
National Bureau of Standards in 1957 [1]. Their work
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laid the foundation for the field of image processing,
which has since evolved into more specialized areas
such as image segmentation, and more specifically, map
segmentation.

Segmentation is the computational process of
partitioning different regions in a given media. It
involves high-precision analysis of an element’s
boundary and the ability to differentiate between
various segments. This process is critical in applications
ranging from tumor detection in medical imaging
to defect identification in manufacturing and object
classification in autonomous vehicles, where precise
segmentation of objects and areas is crucial.

Expanding on this foundation, our project focuses on
the use of semantic segmentation for urban planning
and architecture. Urban planners rely on precise land
use classification to make informed decisions that im-
pact urban development and environmental conservation
[Figure 1]. To address this problem, we utilized models
such as U-Net, FCN-8, and FCN-32 to identify and
differentiate regions of a terrain map from aerial views.
The application of semantic segmentation allows us to
use the power of Al to transform aerial imagery into
actionable insights for urban development and environ-
mental planning. Through this project, we aim to demon-
strate our ability to apply Al concepts and implement
various complex models to gain insights into real-world
problems.

III. SURVEY OF RELATED WORK

Semantic image segmentation is most prominent
in the medical field with models segmenting tumors,
body parts, internal organs, etc. It was not until the
introduction of U-Net that high-performance image
segmentation became possible [6]. U-Net is an encoder-
decoder-based model that accepts an image as an input
and outputs the transformed image with segmented areas
colored. The encoder part of the model uses a regular
convolutional network that downscales the images and
extracts features, while the decoder part upscales the



images, increases the resolution, and provides the final
output of the model [7]. The basic U-Net structure has
been built upon and improved with the introduction of
edge-boosted U-net [11] and LCU-Net [10].

In addition to its widespread use in the medical
field, image segmentation is used in urban planning
in various terrain classification tasks. The ability to
be able to extract roads, detect buildings, and identify
landforms using satellite images is crucial in planning
for a sustainable urban environment. For example, Singh
and Nongmeikapam [8] employed a Deep U-Net, a
modified version of the U-Net architecture, for semantic
segmentation of satellite images. The key distinction
between Deep U-Net and U-Net lies in the incorporation
of additional feature layers in the original U-Net model
to capture more intricate representations from input
images. As a result, Singh and Nongmeikapam achieve
90.6% overall accuracy, outperforming other models
using a U-Net-like archotecture. Another approach that
involves highly accurate mapping is the incorporation
of VHR images and applying a multi-scale semantic
segmentation network to predict the output segmented
image [2]. Similar to Deep U-Net, multi-scale semantic
segmentation exceeds U-net’s performance as well due
to its superiority in multi-scale contextual features.
Although both Deep U-Net and multi-scale semantic
segmentation are highly accurate performing models, as
their pioneer, U-Net performs very well in basic map
segmentation.

Even though U-Net has revolutionized semantic seg-
mentation with high performances, FCN (Fully Convo-
lutional Networks) is another architecture for executing
image segmentation. Similar to U-Net, FCN also has
an encoder-decoder portion in its architecture with some
skip connections [9]. However, unlike U-net, it is often
not fully symmetric. FCN contains more convolutional
layers and less connected layers. When comparing the
performance on map segmentation of the two models,
U-Net performed well for both 256x256 and 512x512
images, whereas FCN performed well only for 512x512
images [4]. This result will serve as the foundation for
our analysis of the experiment result when we compare
the performance of U-Net, FCN-8, and FCN-32 on a
128x128 dataset of images.

IV. APPROACH

Our dataset, titled “Earth Terrain, Height, and
Segmentation Map Images,” was obtained from Kaggle
[5]. This dataset comprises paired examples of terrain,
height, and segmentation maps. In our project, we
focused on using the terrain and segmentation maps
exclusively. We used Python for the implementation

of our project, and used TensorFlow and Keras as
our primary backend frameworks for developing and
training our models. The analysis was conducted
within Jupyter Notebooks. In this project, we utilized
several essential Python libraries: Matplotlib for data
visualization, NumPy for efficient matrix operations,
and OpenCV (cv2) for image resizing. We performed
all the training and testing on Spydur.

V. FORMULATION

The problem is formulated as a pixel-wise
classification task within the domain of supervised
learning. Specifically, our objective is to accurately
classify each pixel in aerial terrain maps into one of
seven predefined terrain categories — Water, Grassland,
Forest, Hills, Desert, Mountain, and Tundra.

VI. DATASET

Our dataset contains 5,000 examples, each consisting
of a pair of images: a terrain map and a corresponding
segmentation map. Figure 3 and Figure 4 are examples
of a terrain map and segmentation map.

The terrain maps are rich in detail, featuring varied
land types differentiated by unique color codes and
augmented with relief shading to enhance the depiction
of elevation. These images are encoded in the PNG
format. Each segmentation map in the dataset serves as
a labeled example, with distinct color codes representing
different terrain types. This labeled data is essential
for training the models, as it provides the ground truth
needed to learn the accurate classification of each pixel.

Before the experimentation, we divided the initial
dataset into three subsets. The first subset included the
first 4,000 images designated for training purposes, the
second subset consisted of images numbered from 4,001
to 4,500 intended for validation, and the third subset
encompassed images numbered from 4,501 to 5,000
allocated for training. The resulting split is 80-10-10.

Our data processing begins with raw input images,
each with dimensions of 512x512 pixels. These images
are first resized to 128x128 pixels. Corresponding to
each raw image, there is a label image also originally
at 512x512 pixels, which is also resized to match the
transformed image dimensions of 128x128 pixels. Once
resized, the 128x128 label images go through a color-
to-class conversion. This involves mapping specific
color codes in the images to class identifiers (0-6). This
step translates visual information into categorical data.
The class identifiers are then converted to a one-hot
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encoded format. In one-hot encoding, each class label
is represented as a binary vector with all zeros except
for a single high (1) at the index of the class label.
For instance, a class label of 3 would be represented as
[0, O, O, 1, 0, O, 0]. This transformation is necessary
for training of the neural network by providing a way
to handle multi-class labels. The one-hot encoded
classes and the resized raw images are input into the
model. Then the model processes the raw pixel input
to produce a softmax output, which represents the
probability distributions over the class labels for each
pixel. The softmax output from the model gives the
probabilities for each class at each pixel, formatted
as 128x128x7. This output then undergoes an argmax
operation, where the highest probability in each vector
is selected, determining the class with the highest
likelihood for each pixel. The predicted class data is
now reduced to a single class per pixel. Finally, the
predicted class data is converted back to color data

through a class-to-color conversion process. This allows
us to visualize the model’s outputs and interpret the
predictions. The data processing pipeline is summarized
in Figure 2.

Figure 5 provides a comprehensive breakdown of pixel
counts for each class that we identified in this exper-
iment. On the x-axis, it displays the six classification
classes, while the y-axis quantifies the number of pixels
representing each class across the entire dataset. It is
comprised of three charts, each depicting the distribution
of one of the three different datasets utilized in our
experiment. Notice the y-axis is scaled by some power
of ten in order to visualize the trend in the pixels of
the dataset across the three datasets. Based on the visual
interpretation of each chart, all three distributions exhibit
a consistent imbalance across the splits, with each class
containing a similar proportions of pixels relative to the
others within each distribution.

VII. MODELS

For our experiment, we decided to implement a
U-Net architecture to create a model that can process
raw images and output segmented images. Our U-Net
model consists of both down-sampling and up-sampling
with skip connections within each layer of the model
which can be seen in the Figure 6. The down-sampling
is the initial stage of the model where the convolutional
layers are used to reduce the spatial dimensions of the
input while increasing the number of feature channels.
Max pooling occurs to create the feature maps, which
summarizes the features. The lowest layer of the model
is called bottleneck: this is where the down-sampling
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ends and up-sampling begins. Up-sampling is done to
gradually restore the spatial resolution of an image.
The process at each layer of decoder involves up-
sampling the feature map and concatenating it with
the feature map from a corresponding encoder module.
With the combination of down-sampling, up-sampling,
and skip connections, our U-Net architecture aims to
effectively process raw images and produce accurate
segmented outputs, demonstrating its utility in image
map segmentation tasks.

To evaluate our U-Net performance, we have
decided to include fully implemented models of FCN-8
and FCN-32 with our modifications [3]. The FCN
architecture emphasizes the encoder to extract a rich set
of features. Various FCN models incorporate different
number of skip connections and connectivity layers
to enhance spatial resolution. For instance, in Figure
7, FCN-8 has two connectivity paths utilized for
prediction using the feature maps during decoding,
which is similar to the up-sampling in U-Net where
skip connections act as a bridge for passing information
to the decoder. However, FCN-8 lacks a symmetric
architecture since it incorporates fewer connectivity
paths to the decoder as the main focus of FCN lies
in the encoder’s feature extraction. Unlike U-Net and
FCN-8, FCN-32, shown in Figure 8, has the most
straightforward architecture where its sole purpose is
to utilize the features extracted from the encoder and
predict the output with a single up-sampling operation
without any aid from connectivity paths. FCN-32 is
computationally less expensive than both FCN-8 and
U-Net; however, as a result of this design choice, it
may lead to a less accurate segmentation.

Based on varying architectures, we expected that
U-Net would have the highest accuracy, compared
to FCN-8 and FCN-32, in predicting the true map
segmentation of any input map due to having more
connectivity paths between the encoder and decoder
which will provide a more precise segmentation. We also
expect that FCN-8 would perform better than FCN-32
since FCN-32 will solely rely on the features extracted



as opposed to FCN-8, having some connectivity path
from the encoder.

VIII. EXPERIMENTS & ANALYSIS
A. Training

We initially trained our U-Net model on images with
dimensions of 512 x 512 pixels. However, during the
first epoch, it achieved only 8% validation accuracy,
and this declined further in subsequent epochs, which
indicates overfitting. To address this issue, we resized
our images to 128x128 pixels for all models’ training
and testing.

First, we trained the U-Net model. We compiled
the model with the Adam optimizer, categorical
cross-entropy as our loss function, and accuracy as
an additional metric computed at each epoch. We
configured several callbacks including early stopping
with patience of 5 and model checkpoint that saved
only the best weights in the H5 format. The number of
epochs was configured to be 30,000 (terminate when
the model stops improving based on the validation loss
monitor).

The U-Net model was trained for 54 epochs with
49 being the best epoch, after which the model started
overfitting. The final test accuracy and test loss were
95.11% and 0.139 respectively. The U-Net training
process is summarized in Figure 10. Additionally, to see
how U-Net is performing over the epochs, we extracted
the intermediate weights from the middle epochs to
see how the model improved in Figure 9. From the
figure, it is clear that the first categories that the model
learned were water, grassland, and forest. The hills,
mountains, and desert categories were only learned in
later epochs (after epoch 7) which is expected due to
the class imbalances in the dataset reported in Figure 5,
where water, grassland, and forest are disproportionately
overrepresented in the data.

Both FCN models were trained with the same training
hyper-parameters as the U-Net model, but both only
learned for 7 epochs prior to early stopping which
indicates severe overfitting, as seen in Figure 11. In
fact, the best results for both models were achieved in
epoch 1, so most overarching patterns were extracted in
the first dataset run. The test accuracy and test loss for
FCN-8 were 49.65% and 1.84 respectively, while test
accuracy and test loss for FCN-32 were 37.86% and
1.71 respectively.

These performance results are in line with our
expectations, since U-Net is extracting features

more efficiently due to its large encoder module
and upsampling them effectively by retrieving the
lost features using the skip connection from the
corresponding encoder convolutional layers. We also
expected FCN-8 to perform better than FCN-32 due to
more precise convolutional filters/feature maps and two
skip connections that retrieve more features. FCN-32, on
the other hand, does not get any additional information
from the skip connections, and therefore relies only on
its large 32x32 kernels to retain most of the features.
We speculate that these results show that kernel size is
not as good at retaining initial image features compared
to the skip connections in the decoder. The previous
literature also suggests that FCN-like models perform
better on the high-resolution images, but since we
resized our inputs from 512x512 to 128x128 for the
sake of fair comparison between the models, we might
have not utilized the full architectural potential of FCN.
It is also worth mentioning that the inference on the test
set for 500 images for U-Net took around 30 seconds
and both FCNs took a little less than 6 seconds on the
same machine. This indicates that the FCN architecture
might be more efficient for inference, but more tests on
different dataset sizes, machines, and frameworks are
needed.

B. Performance Analyses

1) Quantitative Analyses: There is an obvious
pattern in the confusion matrix shown in Figure 12
for U-Net, that is, most of the predictions made by
U-Net are correct. This corresponds to the Precision,
Recall, F1 table labeled as Table 1, where U-Net
has a very high recall and F-1 score for all of the
categories. From the confusion matrix, it is interesting
to observe that the water, grassland, forest, and hills
are often misclassified. This could be attributed to the
presence of small water bodies (such as lakes) within
grasslands, forests, or hills on map representations.
Consequently, it is challenging to predict these small
chunks accurately. Additionally, the category “Hills”
has the lowest precision and F-1 score among all the
categories, meaning when the model predicts hills,
it is less likely the prediction is correct. The two
0’s in the confusion matrix suggest that mountain and
grassland are never confused by each other by the model.

For FCN-8, based on the confusion matrix shown in
Figure 12 and Table 1, it becomes evident that water is
consistently the only category correctly classified most
of the time. All other categories have low precision,
recall, and F1 scores. Notably, grassland often gets
misclassified as forest or hills, while forest is frequently
mistaken for water or grassland. Additionally, hills and
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desert tend to be misclassified as grassland, whereas
_ _ mountain and tundra are commonly misclassified as

U-Net Train Accuracy & Validation Accuracy over Epochs . . A )
- unaTn water or forest. This is likely due to water being
over-represented in this dataset. To improve recall and
precision for other classes, we need either higher-
resolution images or a larger and more balanced dataset.

The confusion matrix for FCN-32 suggests that water
and desert are the only two categories that have high
recalls. However, the precison for desert is very low,
indicating that the model tends to predict a pixel as the
desert most of the time. The 0’s in the confusion matrix
means desert is never misclassified as forest or grassland.

! TABLE I: Precision, Recall, F1 for Three Models
o 10 20 30 a0 50 Precision Recall F1
Epochs Class
U-Net FCN-8 FCN-32 U-Net FCN-8 FCN-32 U-Net FCN-8 FCN-32
. L. . . Water 099 075 077 095 078 085 097 077 081
Fi g. 10: U-Net Trainin g & Validation Grassland 094 037 0.50 095 041 002 095 040 0.0s
Forest 0.95 045 0.56 0.95 0.56 0.00 0.95 0.50 0.00
Hills 0.88 0.23 0.14 0.94 0.20 0.29 0.91 0.21 0.19
Desert 0.94 0.15 0.17 0.96 0.06 0.96 0.95 0.08 0.28
Mountain 0.95 0.11 0.02 0.94 0.06 0.02 0.94 0.08 0.02
Tundra 0.92 0.11 0.10 0.96 0.05 0.01 0.94 0.06 0.02
Total 0.98 0.89 0.92 0.99 0.87 0.87 0.99 0.88 0.90
FCN Traiin Accuracy & Validation Accuracy over Epochs 2) Qualitative Analyses; The Fi gure 13 shows the

—e— FCN-8 Train
— FCN-8 Valid
—e— FCN-32 Train
- FCN-32 Valid

predicted output from each model along with the true
segmented image. From first glance, it is very clear that
U-Net had produced an output that most resembled the
true segmented images and outperformed the other two
models in its prediction. The U-Net model was able
to produce almost all the details within the true label.
Compared to U-Net, FCN-8 and FCN-32 were not able
to accurately produce a prediction that resembled the
true segmentation. Unlike U-Net, the kernel size of
FCN-8 is 8x8 which we can visibly observe the filter
being applied in each pixel as there is a clear distinction
between each 8x8 pixel. In test_img3, although it seems
like a completely incorrect prediction, it still retains the
general features of the label like the outline of the forest.

Epochs.

Fig. 11: FCN Training & Validation Similar to FCN8, FCN32 has a kernel size of 32x32.
We can see the traces of the convolutional operations
on the predicted image with the noise repeating in



True Label

True Label

True Label

Wate,.

2SSl

forege

m
Uty %esery

tungy,

tungy,

Wate,

e
Toresy SSlang

Yesery hilgg

Mounty;,

tungy,

151,327

water

grassland forest hills
Predicted Label

FCN-8 Confusion Matrix

U-Net Normalized Confusion Matrix

desert

mountain

1,081,071 118,035

257,241 175,839

220194 118,564

140,157 24,130

26,295

12,684

19,128

14,491

12,548

22,933

26,483

17,760

6,806

19,009

grassland forest hills
Predicted Label

grassland forest hills
Predicted Label

desert

FCN-32 Normalized Confusion Matrix

desert

mountain

mountain

Fig. 12: Confusion Matrices

tundra

tundra

true labels

test-img1

N
j=J
£
%
Q
2

predictions

Fig. 13: Comparison of picture quality from the three
models

the squares of 32x32 pixels. When observing the first
prediction image of FCN-32, the main feature of the
image was captured in the output as there is a clear
division between water and desert; however, as for the
mountain terrain, it is scattered throughout each 32x32
pixels. However, FCN-32 was not able to predict well
in test_img3 as it predicted hill for most terrain and a
patch of water in the bottom right of the image, even
though there is little to none presence of hill and water
on the true map. Overall, U-Net outperforms FCN-8 and
FCN-32 in image segmentation, demonstrating superior
accuracy and detail retention, while the latter models
exhibit limitations due to kernel size and precision
issues which are evident in Figure 13.

Convolutional Filters

To analyze the convolutional filters of U-Net and look
into the patterns they produce when applied to the real
input, we extracted the first two parts of the U-Net
encoder [Figure 14]. The input layer was always present
in the chunk we extracted, then all other model chunks
included all previous encoder components and the next
one included the max pooling layer. The resulting model
chunks were saved and the input image was run through
all three of them. We plotted the weight intensities for
the first 32 filters of each model chunk to see if any
patterns emerged.

The first few layers of a convolutional network
usually represent the most basic features extracted from
an image: edges, lighting, and basic shapes. This is
what we notice at the top layer of U-Net. We see that
some filters highlight the boundary between the island
and the water and others separate regions that have a
different color intensity in the raw input image. As the
encoder further down-samples the image, the feature



maps become more obscure and specific, and their
number becomes much larger. In the second encoder
layer of U-Net, we see more specific features related
to the image: the distinction between mountains and
desert, hills and desert, etc. If we go further down, the
applied filters become somewhat hard to read.

Through this analysis, we saw approximately what
features the model considers important on one sample
input image.
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IX. CONCLUSION

In the current project, we implemented and trained
three map segmentation models: U-Net, FCN-8, and
FCN-32. We conducted quantitative and qualitative
analyses to examine the model performance. The results
showed that U-Net performs the best with the test
accuracy of 95.11%. The FCN-8 and FCN-32 had
test accuracies of 49.65% and 37.86% respectively.

We attribute the discrepancies between the model
performance to different model architectures, dataset
size, and picture size and resolution.

One of the weaknesses of our approach is that we did
not use the 512x512 images for the FCN model training.
According to previous studies, using higher resolution
images might be helpful for the FCN performance
prediction, since the convolutional layers would retain
more spatial information. Another weakness is the
dataset size. Though 5,000 pictures is enough to train
the U-Net model, it is likely not enough for FCN,
so getting a larger dataset size is necessary for future
analyses. Lastly, our models are overfit to the dataset
and are unlikely to perform well on the real-world data
with different raw image maps.

For future work, we aim to expand the scope of
our research by incorporating 512x512 high-resolution
images for FCN models to enhance model accuracy and
detail resolution in segmentation tasks. Additionally,
we would like to find a larger dataset which would
allow us to utilize 512x512 resolution input images in
U-Net models, thereby avoiding the need for image size
reduction. Furthermore, we would like to explore the
capabilities of Generative Adversarial Networks (GANs)
on this task. Lastly, to improve the applicability of our
models, we intend to introduce more terrain categories.
This diversification will enable our models to handle a
wider range of geographic features and environmental
conditions.

X. APPENDIX: ROLE OF EACH MEMBER

All members of the group contribute to model
development. Win and Ginny worked on the data
processing, and Tolya and Sophie worked on the
analyses. All members contributed to the report equally.
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