
WEyeDS: A Desktop Webcam Dataset for Gaze Estimation
Anatolii Evdokimov1, Catherine Finegan-Dollak1, Arryn Robbins1

1University of Richmond, VA, USA

 
Background

[1] Nachiappan Valliappan, Na Dai, Ethan Steinberg, Junfeng He, Kantwon Rogers, Venky Ramachandran, Pingmei Xu, Mina Shojaeizadeh, Li Guo, Kai Kohlhoff, and Vidhya Navalpakkam. 2020. 
Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nature Communications 11, 1 (2020), 1–12. https://doi.org/10.1038/s41467-020-18360-5
[2] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhandarkar, Wojciech Matusik, and Antonio Torralba. 2016. Eye Tracking for Everyone. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR).
[3] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, 
Manfred Georg, and Matthias Grundmann. 2019. MediaPipe: A Framework for Building Perception Pipelines. CoRR abs/1906.08172 (2019). arXiv:1906.08172 
http://arxiv.org/abs/1906.08172

References

 
Data Processing & Benchmark Model

 
Method

 
Data

 
Preliminary Results

ETRA 2024 LBW

● Significant advances were made in appearance-based 
2D gaze estimation with some models achieving <2cm 
estimation error [1].

● Those models require large open datasets like 
GazeCapture [2].

● There is a need to have a dataset with variability as 
high as GazeCapture for desktop and laptop devices.

Current Study
● The goal of this project is to create a new eye 

movement dataset collected using laptop/desktop 
webcams.

● Evaluate the dataset using an existing gaze prediction 
model.

● Discuss limitations and improvements to the current 
data collection procedure and experiment design.

● Dataset was collected online from a pool of 
participants at the University of Richmond using 
webcams.

● Participants completed a prosaccade task (following a 
dot on the screen).

● Participants first saw a black dot appear on the screen 
for 2000 ms. 

● Once the dot changed color to green, participants 
pressed a space bar to see the next dot.

● The dataset consists of full-face images of 38 (54) 
participants completing a prosaccade task along with 
various metadata.

● Each participant looked at dots in 100 locations across 
a predefined grid of 50 cells. The cells were used to 
generate dot locations that evenly cover the prediction 
space. 

● Each x and y dot coordinate corresponds to a 
proportion of the participants’ vertical and horizontal 
viewport.

● With 6 frames per each location, each participant has 
600 image examples in their trial.

● Helpful metadata about participants’ screens and 
browsers was also collected:
○ Browser data: user agent, platform.
○ Screen data: screen width and height, scroll width, 

inner window width and height, device pixel ratio.

Data Processing
● To generate image inputs for the model, we used Google’s MediaPipe face mesh [3] 

to obtain eye crops and eye corner landmarks to add to our training examples.
● Additionally, we rescaled the y coordinate of each dot location to be on the same 

scale as the x coordinate. This was done to obtain a meaningful loss value at the 
end of training since a proportion of the width is on a different scale compared to the 
proportion of the height.

● Before training, the eye crops were normalized, and the left eye image was flipped 
to match the right eye image to ensure that weights can be shared between the 
convolutional components of the model.

Benchmark Model
● We reproduced the model from [1] using Keras with TensorFlow backend.
● The model consists of a convolutional component for eye image processing and a 

fully connected component for eye corner landmark coordinate processing.
● The outputs from the two components were concatenated and processed through 

several additional fully connected layers to obtain the final gaze location prediction.

Training
● The model was compiled 

with the Adam optimizer 
and the Euclidean distance 
loss function.

● The final training set 
contained 18,000 examples 
and the validation set 
contained 2,400 examples.

● The model was trained with 
an initial learning rate of 
0.016, decay rate of 0.64, 
and a batch size of 256 for 
40 epochs.

● No hyperparameter tuning 
was done. The values were 
obtained from [1].

● The model achieved the final validation 
loss value of 0.293.
○ This means that the model was on 

average 29.3% of the horizontal 
viewport away from ground truth.

● An additional training run on a larger 
dataset of 54 participants with a 
80-10-10 split did not show a significant 
difference in the final test loss value.

● We also conducted an additional loss 
analysis with loss values averaged 
across screen grid cells.
○ The analysis showed better loss 

values towards the center of the 
screen

Conclusion & Limitations: Since screen parameters are highly varied across participants, 
more data needs to be collected to account for variability in the population. More checks can 
be put in place to ensure that participants are looking at the dots

Prosaccade Task Progression
Valliappan et al. (2020) Benchmark Model Design

Dataset 
&

Code


